首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3260篇
  免费   939篇
  国内免费   480篇
化学   2606篇
晶体学   8篇
力学   200篇
综合类   26篇
数学   229篇
物理学   1610篇
  2023年   26篇
  2022年   74篇
  2021年   77篇
  2020年   98篇
  2019年   124篇
  2018年   109篇
  2017年   148篇
  2016年   147篇
  2015年   281篇
  2014年   269篇
  2013年   404篇
  2012年   329篇
  2011年   321篇
  2010年   266篇
  2009年   280篇
  2008年   276篇
  2007年   196篇
  2006年   190篇
  2005年   157篇
  2004年   142篇
  2003年   142篇
  2002年   95篇
  2001年   85篇
  2000年   75篇
  1999年   57篇
  1998年   67篇
  1997年   46篇
  1996年   41篇
  1995年   35篇
  1994年   32篇
  1993年   24篇
  1992年   12篇
  1991年   8篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有4679条查询结果,搜索用时 15 毫秒
31.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   
32.
Room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters with t‐Bu3P‐coordinated 2‐phenylaniline‐based palladacycle complex, [2′‐(amino‐kN)[1,1′‐biphenyl]‐2‐yl‐kC]chloro(tri‐t‐butylphosphine)palladium, as a general precatalyst is described. Such room temperature Suzuki cross‐coupling polymerization is achieved by employing six equivalents or more of the base and affords polymers within an hour, with the yields and the molecular weights in general comparable to or higher than reported results that required higher reaction temperature and/or longer polymerization time. Our study provides a general catalyst system for the room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters and paves the road for the investigation of employing other monodentate ligand‐coordinated palladacycle complexes including other electron‐rich monophosphine‐coordinated ones for room temperature cross‐coupling polymerizations. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1606–1611  相似文献   
33.
In the present study, biosynthesis of CuO nanoparticles using a rapid, eco‐friendly, cost‐effective and efficient method has been reported employing aqueous Euphorbia maculata extract as mild, renewable and non‐toxic reducing and capping agents without adding any surfactants. The biogenic and green method has some benefits compared to conventional physical and chemical methods. It is simple, cheap and environmentally friendly. The biosynthesized CuO NP displayed a color change pattern (from sky blue to black) on preparation and presented its respective broad peak at 365 nm, which was analyzed by UV–Vis spectroscopy. Using the FT‐IR analysis, biomolecules in E. maculata extract which are responsible for bioreduction activity and synthesize of CuO NP, were identified. The XRD, EDX and FESEM results confirmed the successful synthesis of CuO nanoparticles of 18 nm sizes, with spherical and sponge crystal structure. The catalytic activity of biosynthesized CuO NPs was studied in C‐S cross‐coupling reaction. This method has the advantages of high yields, easy work‐up, and simple reusability. The recovered CuO NP can be reused four times without any considerable loss of its catalytic activity.  相似文献   
34.
To prepare cross‐linked silicone (silicone rubber) particles in an aqueous medium, we investigated two synthesis methods involving a miniemulsion system. The first method was based on cationic ring‐opening polymerization of cyclic siloxane, which is a common synthetic route for linear silicone oil and uses octamethylcyclotetrasiloxane (D4) as the monomer and dimeric D4 (bis‐D4) as the cross‐linker. Although this method produces silicone particles, the particles do not remain in the particulate state after drying because of low cross‐linking density. The polymerization mechanism of this method was also investigated, which proceeds under the ring‐opening reaction of D4 in monomer droplets and upon polycondensation of hydrolyzed D4, which occurs in the water phase (ie, outside the monomer droplets). This mechanism implied that introducing the cross‐linking structure into particles is difficult because of the low solubility of bis‐D4 in water. To overcome these difficulties, we demonstrated a second method of preparing silicone particles based on the thiol‐Michael addition reaction between thiol‐terminated silicone oil and triacrylate in miniemulsion systems. Transmission electron microscopy images indicated that the silicone particles obtained in the particulate state upon drying and the aggregates of these particles showed elasticity.  相似文献   
35.
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions.  相似文献   
36.
In this work, a series of novel acidic polymerized ionic liquids were used as heterogeneous catalyst for alkylation of o‐Xylene with styrene. And the effect of the amount of initiator and the type of acid used for ion exchange on catalyst structure and the catalytic performance of catalysts for alkylation were studied thoroughly. The experiment results show: when the percentage of the amount of initiator in the total material is 3%, the polymerized ionic liquid catalyst MPM‐SO3H‐[C3V][SO3CF3] has the most uniform with a specific surface area of 97.30 m2/g and a pore volume of 0.35 cm3/g. Benefiting from the unique structure features, MPM‐SO3H‐[C3V][SO3CF3] manifested an excellent catalytic performance for alkylation of o‐Xylene with styrene, along with the conversion of styrene was 96.8% and the yield of 1‐Phenyl‐1‐ortho‐xylene ethane was 94.7%. Therefore, this work provides a novel reference to the synthesis of polymerized ionic liquids and clearly explains the advantage of novel acidic polymerized ionic liquids on alkylation.  相似文献   
37.
Antibiotic susceptibility test (AST) discs are used as an in-vitro diagnostic tool to select the appropriate antibiotic to treat an infection. Generally, the concentration of the drug loaded on to the AST discs is measured by studying its activity against quality control organisms. This methodology has several limitations—it is time consuming, requires trained manpower, has a wider acceptance criteria of zone of inhibitions—causing ambiguity in judging smaller variations in drug concentration. To overcome these issues, we have developed and validated high-performance liquid chromatographic (HPLC) methods for the determination of strength of AST discs for in-house researched antibiotics, namely Levonadifloxacin/WCK 771, Nafithromycin/WCK 4873, Cefepime-Tazobactam/WCK 4282, and Cefepime-Zidebactam/WCK 5222. The drugs were extracted from the AST discs using an appropriate solvent. The developed methods are simple, accurate, precise, reproducible, rugged, and robust. They are efficient in terms of time, and can be easily conducted in a quality control laboratory during release as well as stability evaluation of AST disc. Application of HPLC methods for the determination of strength of AST discs ensures flawless quality and, consequently, a better selection of drugs to treat bacterial infections in clinics.  相似文献   
38.
In this study, magnetic nitrogen‐doped carbon (MNC) was fabricated through facile carbonization and activation of natural silk cocoons containing nitrogen and then combined with Fe3O4 nanoparticles to create a good support material for palladium. Palladium immobilization on the support resulted in the formation of magnetic nitrogen‐doped carbon‐Pd (MNC‐Pd). The prepared heterogeneous catalyst was well characterized using FT‐IR, TGA, EDX, FE‐SEM, XRD, VSM, and ICP‐OES techniques. Thereafter, the synthesis of biaryl compounds was conducted to investigate the catalyst performance via the reaction of aryl halides and phenylboronic acid. Further, the catalyst could be used and recycled for six consecutive runs without any significant loss in its activity.  相似文献   
39.
In this study, we report the development and validation of an LC–tandem mass spectrometry method for the simultaneous quantitation of bendamustine and copanlisib in mouse plasma as per the US FDA regulatory guidelines. The sample processing involves extraction of bendamustine and copanlisib along with internal standard (IS; warfarin) from 50 μL mouse plasma using a liquid–liquid extraction method. The chromatographic separation of bendamustine, copanlisib and the IS was achieved on an Atlantis dC18 column using an isocratic mobile phase (5 mM ammonium acetate:methanol, 20:80 v/v). Bendamustine, copanlisib and the IS eluted at 0.88, 1.39 and 0.74 min, respectively, with a total run time of 2.5 min. The calibration curve ranged from 3.99–2996 and 4.33–3248 ng/mL for bendamustine and copanlisib, respectively. Inter- and intra-day precision and accuracy, stability in processed samples and upon storage, dilution integrity and incurred sample reanalysis were investigated for both the analytes. The intra- and inter-day precisions were in the ranges of 2.01%–5.05% and 2.74%–6.13% and 1.98%–7.64 and 8.62%–9.04% for bendamustine and copanlisib, respectively. Stability studies showed that both analytes were stable on bench top for 6 h, in auto-sampler for 24 and at −80°C for 30 days. The validated method was successfully applied to a pharmacokinetic study in mice.  相似文献   
40.
This is the part II of a tutorial review intending to give an overview of the state of the art of method validation in liquid chromatography mass spectrometry (LC–MS) and discuss specific issues that arise with MS (and MS–MS) detection in LC (as opposed to the “conventional” detectors). The Part II starts with briefly introducing the main quantitation methods and then addresses the performance related to quantification: linearity of signal, sensitivity, precision, trueness, accuracy, stability and measurement uncertainty. The last section is devoted to practical considerations in validation. With every performance characteristic its essence and terminology are addressed, the current status of treating it is reviewed and recommendations are given, how to handle it, specifically in the case of LC–MS methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号